Undirected Machine Translation with Discriminative Reinforcement Learning
نویسندگان
چکیده
We present a novel Undirected Machine Translation model of Hierarchical MT that is not constrained to the standard bottomup inference order. Removing the ordering constraint makes it possible to condition on top-down structure and surrounding context. This allows the introduction of a new class of contextual features that are not constrained to condition only on the bottom-up context. The model builds translation-derivations efficiently in a greedy fashion. It is trained to learn to choose jointly the best action and the best inference order. Experiments show that the decoding time is halved and forestrescoring is 6 times faster, while reaching accuracy not significantly different from state of the art.
منابع مشابه
Optimizing Machine Translation by Learning to Search
We present a novel approach to training discriminative tree-structured machine translation systems by learning to search. We describe three primary innovations in this work: a new parsing coordinator architecture and algorithms to generate the required training examples for the learning algorithm; a new semiring that provides an unbiased way to compare translations; and a new training objective...
متن کاملCoactive Learning for Interactive Machine Translation
Coactive learning describes the interaction between an online structured learner and a human user who corrects the learner by responding with weak feedback, that is, with an improved, but not necessarily optimal, structure. We apply this framework to discriminative learning in interactive machine translation. We present a generalization to latent variable models and give regret and generalizati...
متن کاملReinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback
Machine translation is a natural candidate problem for reinforcement learning from human feedback: users provide quick, dirty ratings on candidate translations to guide a system to improve. Yet, current neural machine translation training focuses on expensive human-generated reference translations. We describe a reinforcement learning algorithm that improves neural machine translation systems f...
متن کاملLarge-Scale Discriminative Training for Statistical Machine Translation Using Held-Out Line Search
We introduce a new large-scale discriminative learning algorithm for machine translation that is capable of learning parameters in models with extremely sparse features. To ensure their reliable estimation and to prevent overfitting, we use a two-phase learning algorithm. First, the contribution of individual sparse features is estimated using large amounts of parallel data. Second, a small dev...
متن کاملDon't Until the Final Verb Wait: Reinforcement Learning for Simultaneous Machine Translation
We introduce a reinforcement learningbased approach to simultaneous machine translation—producing a translation while receiving input words— between languages with drastically different word orders: from verb-final languages (e.g., German) to verb-medial languages (English). In traditional machine translation, a translator must “wait” for source material to appear before translation begins. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014